VIBRATIONAL SPECTRA AND STRUCTURE OF

1,2,4-TRIAZOLE DERIVATIVES

V.* 3-AZIDO-1,2,4-TRIAZOLE DERIVATIVES

V. V. Mel'nikov, L. F. Baeva,†

UDC 543.422.4:547.792.3:539.193

- V. V. Stolpakova, M. S. Pevzner,
- M. N. Martynova, and B. V. Gidaspov

The frequencies and forms of the normal vibrations of 3-azido- and 3-azido-5-methyl-1,2,4-triazoles and their 1-deutero-substituted derivatives were calculated, the effect of the geometrical parameters of 3-azido-1,2,4-triazole on the vibrational spectra was investigated, and the most probable three-dimensional model of the molecule was selected. The solution of the inverse spectral problem was effected by the method of least squares, and the potential energy constants of the azidotriazoles were calculated. It is shown that the force constants of the azido group increase and the elastic constants of the ring decrease when an azido group is introduced into the 1,2,4-triazole molecule. The frequencies in the experimental spectra were assigned to the principal types of normal vibrations.

The vibrational spectra and electronic structures of aliphatic azido compounds were investigated in [2-4], and it was shown that the introduction of electron-acceptor groups into the β and, particularly, the α positions leads to a decrease in the negative charge on the N³ atom of the azido group (Fig. 1) and, correspondingly, to an increase in the reactivities of the alkyl azides in 1,3-dipolar cycloaddition reactions. Data on the electronic and three-dimensional structures of heterocyclic azides are lacking, in connection with which we also undertook a study of the vibrational spectra of 3-azido-, 1-deutero-3-azido-, 3-azido-5-methyl-, and 1-deutero-3-azido-5-methyl-1,2,4-triazoles.

The natural vibrational coordinates of the investigated compounds are presented in Fig. 1. The geometrical parameters of the triazole ring presented in [5] were used for the calculations of the vibrational spectra; parameters determined by microwave spectroscopy [6, 7] were selected for the azido group: bond lengths $N^{1}H = 1.03$, $N^{1}N^{2} = 1.359$, $N^{2}C^{3} = 1.323$, $C^{3}N^{4} = 1.359$, $N^{4}C^{5} = 1.324$, $C^{5}H = 0.93$, $C^{5}C = 1.54$, CH = 1.09,

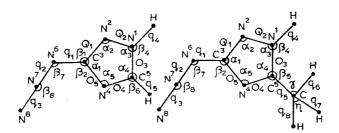


Fig. 1. Structures and natural coordinates of 3-azido-5-methyl-1,2,4-triazole.

Lensovet Leningrad Technological Institute. Translated from Khimiya Geterotsiklicheskikh Soedinenii, No. 9, pp. 1283-1287, September, 1974. Original article submitted July 9, 1973.

©1976 Plenum Publishing Corporation, 227 West 17th Street, New York, N.Y. 10011. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, microfilming, recording or otherwise, without written permission of the publisher. A copy of this article is available from the publisher for \$15.00.

^{*} See [1] for communication IV.

[†] Deceased.

TABLE 1. Frequencies and Forms of the Normal Vibrations of 3-Azido-1,2,4-triazole

Sym- metry	3-Amzido-1,2,4-triazole			1-D-3-Azido-1,2,4- triazole		. Vibrational
	IR spectrum, ν, cm ⁻¹	Raman spec- trum, v,cm ⁻¹		IR spectrum, v, cm ⁻¹	calc., v,	forms*
A'	3110s		3109	3110s	3109	q ₅
A'	3065	_	3061	2285s	2274	Q4
A'	2160ws	2137 (0,6)	2160	2155 vs	2160	$ q_1 = q_2 = q_3 $
A' A' A' A' A' A'	1514s	1522(1,1)	1507	1518vs	1506	$-q_1, Q_4, Q_5, -\beta_5, -\beta_6$
A'	1486o.\$	1493 (2,6)	1493	1470vs	1493	$Q_1, Q_4, -Q_5, -\beta_1, \beta_2$
A'	1455o.\$	1444 (3,9)	1422	1400w	1418	-q ₁ , Q ₁ , -Q ₄ , β ₅ , β ₆
A'	1338o.s	1321 (4,3)	1322	1336s	1321	$ -Q_1, Q_3, Q_4, -\beta_5, \beta_6$
A'	1286s	1281 (0,9)	1269	1260m	1268	$-q_2, Q_2, -\beta_3, \beta_4$
\mathbf{A}'	1220m	1229 (1,3)	1214	1197m	1209	$-q_2, -q_3, -\beta_3, \beta_4$
A'	1173vs	1187 (3,5)	1164	1163w	1148	$Q_2, Q_3, \beta_5, -\beta_6$
A"	1086s		1087	1086s	1087	ρ4, χ
A′	1010m	1047 (4,0)	1026	780w	754	$-\beta_3$, β_4
A′	976vs		954	970s	953	$-q_1, -\alpha_1, \alpha_5$
A"	956w	958 (1,5)	945	730	749	ρ ₃ , χ
A' A'	{ 854 s,br	_	891	902w	890	$-Q_2$, α_2 , α_3 . $-\alpha_4$, $-$
A'	1 0,043,51	838 (3,3)	835	1	843	$-\beta_1, \beta_2, -\beta_7, \beta_8$
				854s, br	1	
A''	790 w	775 (10,0)	789		851.	$-\rho_2$, χ
$\mathbf{A''}$	631 m	622 (3,5)	624	-	623	ρ2. χ
A" . A' A"	524m	496 (0,4)	504	<u> </u>	500	q_1, β_7, β_8
A''	415m	423 (0,6)	407	<u> </u>	. 363	$-\rho_3, \rho_4, \chi$
A′	340 w		325		324	β_8
A'	_	233 (0,2)	239	-	238	$\beta_1, -\beta_2$
A"	<u></u>	207 (0,6)	194		190	ρ_2, χ

^{*} Out-of-plane vibrations: ρ_1 for the N⁶H⁷ bond, ρ_2 for the C³N⁷ bond, ρ_3 for the NH bond, ρ_4 for the CH bond, and χ for the ring vibrations.

 $C^3N^6=1.47$, $N^6N^7=1.24$, and $N^7N^8=1.12$ Å; valence angles $HN^1N^2=124^\circ$, $\angle N^1N^2C^3=102^\circ$, $\angle N^2C^3N^4=115^\circ$, $\angle C^3N^4O^5=103^\circ$, $\angle N^4C^5N^1=110^\circ$, $\angle N^4C^5H=127^\circ$, $\angle HN^1C^9=126^\circ$, $\angle N^2C^3N^6=122^\circ30^\circ$, $\angle HCH=109^\circ28^\circ$, $\angle C_3N_6N_7=120^\circ$, and $\angle N^6N^7N^8=180^\circ$. Rotation of the azide and methyl groups about the C-N and C=C bonds was disregarded. The force constants of the triazole ring and the azido group, which are presented in [2, 8], were selected as the zero approximation of the potential energy constants.

Inasmuch as the three-dimensional structure of 3-azido-1,2,4-triazole is unknown, we calculated the frequencies and forms of the normal vibrations of three geometrical models – the planar model presented in Fig. 1 and models with 90 and 180° rotation of the azido group relative to the C-N bond.

The potential energy constants, which take into account the interaction of the azide group with the ring, were assumed to be zero for the model with 90° rotation of the azide group, inasmuch as in this case the π -electron orbitals of the N_3 group and the triazole ring are orthogonal. The best agreement between the calculated spectra and the experimental spectra was obtained for planar configurations of 3-azido-1,2,4-triazole, although it should be noted that the rather close frequencies in the calculated spectra of the planar structures do not make it possible to unambiguously select a certain geometrical model. In this connection, the geometrical configuration of 3-azido-1,2,4-triazole depicted in Fig. 1 was selected for the calculations of the vibrational spectra. The force field of 3-azido-1,2,4-triazole was refined during the calculations in conformity with the derivatives of the frequencies with respect to the force constants up to the point where the calculated frequencies coincided with the experimental values.

The set of force constants obtained in this way was used for calculations of 1-deutero-3-azido-, 3-azido-5-methyl-, and 1-deutero-3-azido-5-methyl-1,2,4-triazoles. The satisfactory agreement between the calculated frequencies and the experimental values may serve as a confirmation of the reliability of the set of force constants obtained above. The potential energy constants of the azido group and the triazole ring were subsequently refined for the investigated compounds by solution of the inverse spectral problem by the method of least squares (MLS).

The final set of force constants for 3-azido-1,2,4-triazole is presented below (in units of 106 cm⁻²):*

^{*}The force constants are designated in accordance with [9].

The introduction of a methyl group into the 5-position of the ring led to a slight change in the following force constants of the coordinates of the triazole ring adjacent to the methyl group, during which, as one should have expected, the force constants of the azido group did not change:

A comparison of the potential energy constants obtained for 3-azido-1,2,4-triazole derivatives with the force constants of alkyl azides and 1,2,4-triazole showed that a decrease in the force constants of the triazole ring and, correspondingly, an increase in the elastic constants of the N=N valence bonds of the azido group are observed for the azidotriazoles; this should lead to an increase in the electron density of the azido group as compared with aliphatic azido compounds.

The results of the assignment of the principal frequencies in the experimental IR and Raman spectra are presented in Tables 1 and 2.

EXPERIMENTAL

The IR spectra were recorded by standard methods with Perkin-Elmer 457 and IKS-22 spectrometers. The Raman spectra of aqueous solutions were recorded with a DFS-12 spectrometer; the spectral scanning rate with respect to the slit was 6.1 Å/min, $\lambda_{\rm excit}$ was 4358 Å, and the relative intensities of the Raman

TABLE 2. Frequencies and Forms of the Normal Vibrations of 3-Azido-5-methyl-1,2,4-triazole

.	0 4 11 5	-4.11044		1-D-3-Azido-5-		
Sym-	3-Azido-5-methyl-1,2,4-triazole			methyl-1,2,4-triazole		
metry	IR spectrum	Raman spec.	calc.	IR spectrum,	calc.	forms
_	ν, cm ⁻¹	ν, cm ⁻¹	υ, cm ⁻¹	ν, cm ⁻¹	υ, cm ⁻¹	
A' A	3035 m 2942 vs 2160 vs { 1500 s 1465 vs 1441 sh 1425 vs 1402 vs 1378 vs 1225 m 1200 sh 1150 w 1063 vs	2154(1,1) 1516(4,2) ————————————————————————————————————	3061 3015 3028 2944 2157 1520 1504 1469 1454 1410 1364 1244 1190 1158 1064	2160 vs { 1510 s 1470 vs 1430 vs 1415 vs 1382 m 1220 m,br 1200 sh 1156 w 780 m	2274 3015 3029 2944 2157 1519 1499 1469 1454 1417 1409 1360 1239 1180 1158 782	$\begin{array}{c} q_4 \\ q_5, q_7 \\ q_6, q_7, -q_8 \\ q_6, q_7, q_8 \\ q_2, -q_8 \\ -q_1, Q_4, Q_5, \beta_5, -\beta_6 \\ \\ -q_1, Q_1, Q_3, \gamma, \alpha_5, \eta \\ -Q_1, -Q_4, Q_5, \gamma, -\eta \\ \eta, -\gamma, -\eta \\ -\gamma, \eta \\ -Q_1, q_5, Q_4, \beta_8, -\beta_4, \alpha_4 \\ -q_2, -Q_2, -\alpha_1, \alpha_3 \\ -q_2, -q_3 \\ \gamma, \chi \\ -\beta_8, \beta_4 \end{array}$
A' A' A' A' A' A' A' A' A' A' A'	1039 m 1017 w 984 vw 900 m,br. 850 sh 800 m 660vw 600w 525m 452m 350w 280m —	1032 (6,0) 1018 (0,1) 980 (5,7) 909 (6,7) 846 (2,0) ————————————————————————————————————	1015 983 957 907 834 808 641 633 601 508 443 336 254 207 152	1040 m 1000 sh 988 w 780 m 850 vw 840 sh ————————————————————————————————————	1020 982 959 781 841 838 635 543 628 504 435 336 236 206	$\begin{array}{cccccccccccccccccccccccccccccccccccc$

lines are presented on a ten-point scale. The calculation of the frequencies and forms of the normal vibrations and the solution of the inverse spectral problem by the method of least squares were accomplished with a Minsk-22 computer from programs developed in [9]. The anharmonicity of the vibrations was taken into account by introduction of the spectroscopic masses of the H and D atoms.

LITERATURE CITED

- 1. V. V. Mel'nikov, V. V. Stolpakova, M. S. Pevzner, and B. V. Gidaspov, Khim. Geterotsikl. Soedin., 1423 (1973).
- 2. V. V. Mel'nikov, L. F. Baeva, and B. V. Gidaspov, Zh. Prirodn. Soedin., 13, 87 (1973).
- 3. V. V. Mel'nikov, S. A. Zacheslavskii, L. F. Baeva, and B. V. Gidaspov, Zh. Organ. Khim., 8, 1805 (1972).
- 4. V. V. Mel'nikov, L. F. Baeva, S. A. Zacheslavskii, G. I. Tsypin, and B. V. Gidaspov, Zh. Organ. Khim., 10, 1363 (1974).
- 5. P. Goldstein, L. Ladell, and G. Abowitz, Acta Crist., B25, 135 (1969).
- 6. R. Livingston and C. N. R. Rao, J. Phys. Chem., 756 (1960).
- 7. E. Ivash and D. Dennison, J. Chem. Phys., 21, 1804 (1953).
- 8. V. V. Mel'nikov, V. V. Stolpakova, and B. V. Gidaspov, Khim. Geterotsikl. Soedin:, 460 (1972).
- 9. L. A. Gribov, Introduction to the Theory and Calculation of the Vibrational Spectra of Polyatomic Molecules [in Russian], Izd. LGU (1965).